曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

 时间:2026-02-14 06:13:41

1、联立方程,求交点通式如下:

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

2、通过定积分,求围成面积通式如下:

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

  • 曲线y1=-x^2/2与直线y2=-a-ax围成的面积
  • 如何求函数y1=sin3x与y2=sinx/3围成的面积
  • 曲线y1=-5x^2/2与直线y2=ax围成的面积
  • 曲线y1=-5x^2/2与直线y2=ax-1围成的面积
  • 曲线y1=-x^2/2与直线y2=ax围成的面积
  • 热门搜索
    上虞旅游 广西巴马旅游攻略 台湾旅游胜地 去冰岛旅游 平遥旅游网 云南旅游信息网 纽约旅游攻略 阳泉旅游景点大全 日照旅游景点介绍 凤凰旅游多少钱